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Abstract

The network topology reduction is based on an exact mathematical tool. The principle is a reduction of the problem matrix to a few lines
and columns. The original reduction method developed in this study is an extension of this technique implemented to transient linear heat
diffusion problems. The finite volume model is hence reduced to a few chosen nodes and a new type of element appears, the compensatio
capacitance. This element, discussed in [Lagonotte et al., European Phys. J. Appl. Phys. 13 (3) (2001) 177], links every node of the model
and improves the dynamic behaviour of the model. Two steps of optimisation, concerning the choice of the nodes and the value of the
compensation capacitors, are discussed. The method is implemented to an industrial object, a 5.5 kW squirrel cage induction machine, whict
model is reduced from 1140 down to 10 nodes.
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1. Introduction The Moore method [1] consists on analysing the abilities
of control and observation to build the transfer matrix used
The use of reduced models is criticised nowadays becauséfor a change of base. The input influence on the skte
of fast progresses in computing science, constantly reducingand the weight of each component &f on the output
the computing times. However, some implementations still yectory are studied. The system of equations is truncated

need very simplified accurate models as real-time surveil- i this new base where controlability and observability are
lance of an industrial object thermal behaviour, for instance. {he pest. The Eitelberg method [2] consists on keeping

Experimental studies using inverse techniques will also need
reduced models. A better reliability in transient regime of
such models is still in demand, as well as an easy implemen-
tation of the reduction method itself.

some chosen components of the temperature vdttdihe
reduced state matrix is then identified by the minimization of
a quadratic criterion when both reduced and detailed model

Most reduction methods in literature are based on the areTT]ubmltzdlto the same llnputb(s.tlep or D|rac).| q .
truncation of the state representation (1) of a heat diffusion & model representation, built as a coupled equations
problem through a change of base, thus obtaining a newSYStem, can also be diagonalised to an uncoupled equations

representation with a much lower order (2). system. The influence of the various modes on the system
] thermal behaviour is then studied and the new reduced

{T(t) =AT(t)+BU®) @ representation is deduced by selecting a combination of
Y@)=CT() the modes through various choice criteria. These are the
X(t)=A, X))+ B,U(t) modal methods from Marshall's method [3] keeping the

{ ?(t) =C,X(1)+ D, U (2) largest time constants to the agregation method [4] using an

energetic interpretation of the modes. The obtained model
_ _ can then be optimised by minimization of a criterion [5].
Corresponding author. The reduced model structure can also be postulated and
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yves.bertin@let.ensma.fr (Y. Bertin), patrick.lagonotte@let.ensma.fr its parameters identified from experiments. In these cases
(P. Lagonotte). (except for Eitelberg method), we have a mathematical
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Nomenclature

A state matrix (dimN, N) Ty detailed modelresults..................... I
B input (or control) matrix (dimn, p) T; reduced modelresults..................... K
C observation matrix (diny, N) U input vector

C thermal capacitance.................. K3t Vv boundary conditions vector

Ca thermal capacitance matrix X state vector in the reduced model base

G conductance matrix Y admittance matrix

j unitary imaginary number Y output vector of the detailed model

J error criterion Y output vector of the reduced model

No number of observation nodes Z impedance matrix

Ns number of s.upplementary nodes B Greek symbols

s Laplace variable ........................ s

P source flux matrix € absolute error

R resistance matrix ¢ heatflux.............o . W
fs simulation time . ............coovveiinn.... s @ flux Laplace transform

T temperatures vector (state vector) 0 Heating Laplace transform

Ta ambient temperature ...................... K o pulsation................... rad?

model, the elements of which can hardly be physically fluid transport through a linearised conductance. The herein
interpreted. presented reduction method is limited to linear problems.

The reduction method described hereafter is based onthe One can express the obtained equations system under the
electric network theory (see [6,7]). The method principle [8] state representation form:
rests on the physical interpretation of the conductance matrix ., 1 1
G and its inverse, the resistance matx The matrices IT=-CaG-T+C7P (3)
G and R only lead to the stationary state of the system.
Therefore, we introduce the admittance and impedance
matricesY and Z, containing the model structure in the
Laplace space. . . . .

We observe in the reduced model the presence of aL?;gsJ.ortant meshed networks. It has the following particulari-
supplementary element, a capacitance of negative value,
discussed in the frame of nodal method improvement in
reference [9]. This element, which we call compensation
capacitance, makes a contribution in the dynamic response
of the model.

The reduction is discussed with the help of the simple
case of a wall and then completed by an optimisation of
the choice of the nodes and by the optimisation of the
compensation capacitances values. An implementation to a
complex industrial system is then presented dealing with
an electric induction motor. The reduced model results,
compared to the detailed model’s ones, are eventually

2.1. The conductance matrix G

The conductance matri is very easily written, even for

— According to our agreement, all the diagonal terms are
positive.

— Non-diagonal terms are all negative or null, thus satisfy-
ing Kirchhoff’s law.

— The matrix is symmetricalG;; = G ;) except if there
is a fluid transport conductance, for in that case a node’s
temperature is only dependant of the upstream node(s)
(unilateral conductance).

— In general, most of non-diagonal terms are null, accord-
ing to the fact that each node has its energy balance only
linked to its direct neighbourhood. The matrix is sparse,

presented. interactions are local ones.
— The system topology can be derived fréim
2. Definition of the problem 2.2. Theresistance matrix R

Let us consider a thermal problem treated by the nodal The matrixR is calculated invertings. It is a full matrix
method. This method’s principle is to mesh the object as for if we inject a flux in the nodé, we obtain the resulted
elementary volumes assumed isothermal. An energy balancgemperature rise in every node of the model as a function of
written on each of these volumes, the actual nodes, leadseach term of the matrix, in static regim®T = R - ¢ that is:
to a coupled algebraic-differential equations system. The
coupling taken into account between each nodes can moder 11 = R1i - ¢i.

a transfer by conduction but also by convection, radiation or AT; = R;; - ¢;, ...

AT, =Ry - ¢i, ...
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ATy—1=Ry—1; - ¢i, AT, = Ry - ¢ 3. The model reduction method

One obtains the static regime image of the heat diffusionin  Tha network reduction method proceeds by the selection
the whole system caused by an injectioni.iR is therefore 4 nodes to keep among those of the detailed model. The ob-
a sensitivity matrix. ) tained reduced model keeps a structure analogue to the de-
The diagonal termr;; corresponds to the equivalent  tajleq one, which can be represented as an equivalent elec-
resistance of the whole network seen from the consideredyic network, and linking the few chosen nodes together. The
node,AT; = Ri; - ¢i (input impedance betweenand the  heat input flux conditions are then automatically distributed

reference node). Non-diagonal terms an provide the mutualamong those nodes and only their temperature will be acces-
influence between every couple of node. Physically, a flux gjpje in simulation.

injectiong; will generate temperature variations everywhere
in the network and in particular, in the nodeT; will vary 3.1. Reduction of the network
proportionally toR;;.
One can summarise the principal characteristics of the  The reduction process starts with the separation of the
matrix R: system in two sub-systems. We therefore consider at this
stage that a choice has been done and that only a few nodes
— The matrixR is symmetrical(R;; = R;;) unlessinthe  among the detailed model's ones will be kept. This stage of
presence of unilateral conductances in the network.  the choice of the nodes constitutes one of the main part of the

— The matrixR is mathematically full. It contains intrinsi-  method and is described in Section 4.1. Thus, the problem is
cally the physical interactions between every couple of expressed as:

nodes, leaving the advantage to give a global vision of
the temperature diffusion in all the network caused by [‘pl} = [Yll(s) YlZ(S)} : [01} (6)
an injection of flux in a single node. ®2 Yar(s)  Yaols) | [ 62
— The matrix R intrinsically contains static regime re- The index 1 concerns the kept nodes and the index 2
duced models (obtained by Gauss elimination). the eliminated ones. Defining as the model’s impedance
matrix which is the inverse df, the formulation o from
Eventually, as the matri and R are inverse one from  the system (6) leads us to:
the other, it contain intrinsically the same information. These
equivalent informations are presented under two different
forms, locally for the matri>G and globally forR. Zi1=(Yun—Yio- Y2*21 . Y21)_1

01=Z11 (91— Yio- Ygzl - ®)) @)

Thus, if we define the reduced matridégqg and®eq as
Yied=Y11—Y12- Yo, - You =2}
So as to turn to a reduced model we introduce another{ @eq= @1 — Y1o- Ygzl - Py (8)
formulation, derived from the Laplace transform, and using 1
. . ) . =®1+7Z; Z12- P>
complex matrices for the numerical computation. First of all,

temperatures are expressed as temperature rises comparéie can now express the problem as a reduced system
to the ambient temperature, considered continuously ascontainingas much equations as kept nodes:

2.3. Reformulation of the problemin the Laplace space

the reference temperature. Then, we apply the Laplace(pred: Y red(s) - 01 (9)
transform to the system.
The transformed Eq. (3) can then be expressed as: The first expression of (8) shows that one can obtain from
the complete admittance matrix the reduced matrix of the ad-
Cas-0=—-G-0+9 (4) mittances containing the actual reduced model. The network

, : . reduction operation can then be carried out according to the
Therefore we d.efme thadmittance matrix by ¥ (s) = (G + diagram of Fig. 1. The matriX (from expression (6)) is in-
Ca-s), contammg the conductance network as well as the verted. The sub-matri¥11 corresponding to the nodes to be
thermal _capautances, which leads us to the new prObIemkept is extracted from the obtained matrix. A new inversion
formulation: is applied producing the admittance matrix of the reduced
S=Y(s) 0 (5) networkYeg. One can notice that the inversion, computing
time consuming, is carried out once for all, whichever nodes
The inverse of the admittance matrix is then called the are chosen for the reduced model. One can thus extract from
impedance matrix and notedZ(s). So we assembled in a the impedance matrix as much reduced networks as desired
single matrix all the information concerning the considered in a simple inverting operation on a small sized matrix.
network structure. This matrix contains both the static and  If we could invert literally, we would obtain a reduced
dynamic characteristics, the reduction operation is applied model analytically exact expressed as a functionsof
to it. However, the literal matrix inversion cannot be applied to
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Reduced equivalent
network

Topology and value of ~ Detailed equivalent
the network s elements network

By construction

v

By construction

Nodes to :
Admittance keep Y11 | Yi2 [ v ]
. ' Reduced
matrix ‘ :
Nodes to ‘
eliminate Y21 | Y22 . ?
---------------------------- Matrix inversion < ---=--«------ Biia s staic Matrix inversion - -
Nodes to :
Impedance keep le | le Nodes elimination - le
matrix Nodes to | Interactions are kept
eliminate L 221 z22
Fig. 1. Methodology for the reduction of a dynamic system’s physical model.

large systems and numerical inversion will require a new
formulation of the problem as complex matrices. To do
so, we substitute the Laplace variabldy the imaginary
numberjw.

The complex admittance matri(w) is then composed
by a conductance as the real part and by susceptance as
the imaginary part. Then, for the numerical determination of
the reduced admittance mati%e4(w), we need to make a
first approximation by choosing a reference pulsation value
wy before we apply the method described in Fig. 1.

If we replaceY by the real matrix of conductancées,
the reduced model obtained is numerically exact to com-
pute static regimes. In our case, the dynamic reduced modeRS an equivalent network. If we assume that the original
is exact for the reference pulsatien. That is to say that ~ sourcesp; are step functions of time, those networks would
for harmonic excitations with the pulsatian (chosen for ~ be RC filters. In that way, the heat injection in each node
the writing of Y (w)), the responses at the reduced mod- would not only be a damped signal but also a delayed
el's nodes will have exactly the same phase and amplitudeone. This formulation would give a better representation
than at the detailed model's corresponding nodes. Concern-0f the distance between the real source and the reduced
ing the implementation of this method to the thermal prob- model’s nodes. Taking this information into account would
lems we present here, we choose a very low reference pu|_entails the addition of an important number of nodes (not
sation for ~ 107° rads™1) in order for the reduced model representative of any physical temperature of the model),
to be nearly exact in static regime & 0) but to also allow ~ especially if different types of independant sources are
the computation of the dynamic reduced model’s structure. involved. That is why we choose to only keep the zero
This choice represents an approximation at this stage. Suctprder terms of this expression, which is the real part of the
a choice is very acceptable for most of possible implementa- numerical complex value @b eq, to stay consistent with the
tions not involving high frequencies. However, further stud- goal of model reduction.
ies are in progress to obtain a better representation of the
spectrum of frequencies, by taking into account a range of 3.2. Sructure of the reduced model
values ofwy for instance.

The obtained reduced matrikeq is @ matrix generally To observe the structure of the obtained reduced model,
full and complex. It can be interpreted as a network of we implementthe method to a model with a simple topology
conductances and capacitances applying the same rules ashere just one direction of the diffusion is taken into
for the writing ofY . account. Thus, a wall of finite thickness and infinite (or

insulated %

‘pc G, s Bext

vtz

%/ insulated
/ B

Fig. 2. Finite wall of thermal capacit¢ and conductancé .

_

Concerning®eq, this matrix is also complex despite
the fact that the original matri is real. We can notice
from expression (8b) that each term @fqq is a function
of s (or jw after the approximation). Thus, each source in

insulated) in the two other directions can be modelled
by a succession of nodes linked by conductances and
characterised by thermal capacitances.

Let us model a homogeneous wall as a series of 128

each node of the reduced model could be itself represented' I7-shaped” cells [10], i.e., 129 nodes linked by conduc-
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o128 Neiz9

Izgngggl ....... {mgngngl ......... Ilggc,TpeGI ........ |123(;ng@| ........ IIZSGTIZQG
%

C/128 cnze CIIZS C/128 C/128 Cf256

Fig. 3. 128 nodes model of the finite wall.

tances of valug;; = 128- G and characterised by capac-
itances of valueC/128 except the two extreme nodes of
which the capacitance value@y256. The node 1 receives a
heat flux input. The node 129 evacuates the heat by the mean
of a conductance towards the reference node modelling con- e
vection on a surface in contact with ambient air. The equiv- T
alent network is represented in Fig. 3. —s . —
For numerical computation, we take values correspond-
ing to a metallic material the thermophysical properties of
which are chosen similar to iron. Then we consider a cylin-
drical bar of diameter 10 mm and length 128 mm perfectly
insulated (cf. Fig. 2), of thermal capaciy= 32 JK~* and
of which the conductance between two nodes4s\§-K 1.
The conductance between the node 129 and the élpis
0.2 W-K~1. The node 1 receives a heat flux of 10 W.
As an example, we apply the reduction to only keep

Fig. 4. Wall model reduced to the nodes 1-65-129.

of the observed nodes’ response quality. One also notices
that the modification of the compensation capacitances
values (divided by 2 on the example Fig. 5) has a clear
influence on the reduced model dynamic performances. The
response in node 129 is appreciably improved but it is to

) the detriment of the response in node 1. These two degrees
the end and middie nodes (1, 65 and 129). The topology of freedom introduce the “optimisation” part of the reduced

of the obtained reduced network is represented in Fig. 4. )
We observe that the reduced model structure contains themOdel construction.
classical elements with the value they would have had if we
had directly modelled the same wall by only three equally
spaced nodes. However, to this classical nodal model are4. Optimisation of the reduced model

added some new elements: negative capacitances linking

every node to each other in the model. Thes@pensation The reduction operation allows to switch from a detailed
capacitances (Cc), whose interest is studied in the reference model to av; nodes model composed by nodes that are to

[9], give to the reduced model the dynamic performances pe observed by the user ang supplementary nodes. These
equivalent to a classical model of higher order. It will gypplementary nodes allows to obtain the best compromise
compensate in a way what the model have lost in dynamic petween quality of the dynamic response (on the observation

due to the lowering of its order. nodes) and fastness of computation. Hence, the optimisation
o stage must improve as much as possible the response on the
3.3. Highlighting degrees of freedom observation nodes, an optimal quality of the response on the

supplementary nodes being not necessary.
Let us observe the simulation results of the reduced

model of the wall presented above. The input condition is
a heat flux step injected in node 1. Fig. 5 presents a compar-
ison of the responses on nodes 1 and 129 for the detailed
and reduced model. One notices that the dynamic behav- The No nodes to observe being chosanpriori, this
iour of these responses is unsatisfying. We notably observe aprocess will complete the composition of the reduced model
strong oscillation during the first time steps for the node 129. by Ns supplementary nodes. These latter must so be selected
This oscillation results from the compensation capacities to in order to obtain an optimal response on the observation
model the delay of the heat diffusion through the wall. In or- nodes. The matriX is inverted only once. We have seen that
der to improve the reduced model’s performances, one caneach network reduction operation only entails very quick
act on two parameters. computations. All theVo+ 1 nodes possible models are then
The nodes composing the reduced model do not all havebuilt and simulated and an error criterion is computed. This
the same importance. Some will be observed by the user ancerror criterion is computed comparing, for the observation
the other are meant to complete it, increasing its order. Thenodes, the responses of the reduced and the detailed models
choice of these secondary nodes has an effect on the qualityEq. (10)).

4.1. Optimisation of the choice of nodes
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Is

11 new last supplementary node. The computation stops when
J = mg‘/w) dr the choice of theNs nodes stays invariable. A scheme
represents this optimisation process in Fig. 6. This strategy
with &(t) = | Tdetailed?) — Treduced?)| (10) is not optimum as not all combinations are tested (this
The input condition are chosen so as to best represent awould_take abo_ut 1_@ years of _computlng time for our
classical repartition of the sources in the detailed model. We mductlon_ m.a.chme. implementation), but we can assume
apply an input which is general and rich in frequencies like that no significant improvement would be added by such a
a step input. The choice of this input maybe adapted to the Perfect” combination. _ S
thermal problem associated with the model but should not ~ Fig. 7 presents two implementations of this optimisation
be chosen too particular. on reduction of the wall model already mentioned. The
The best first supplementary node being chosen by its Presented simulations are in response to a heat step imposed
lowest criterion, the following nodes are computed similarly. at node 1. In the first example, the observation node is the 1.
Once theNs supplementary nodes are chosen, a series of The improvement brought by a best choice of two other
iterations allows to stabilise this solution: each of these nodes is obvious. In the second example, the observation
nodes are successively eliminated to determine again thenode is the 129; the improvement is here less important, the

Wall model (129 nodes) reduced to 3 nodes: 1 - 65 - 129
observation of node 01 observation of node 129

T 20

120
100 ~15
g &
N S’
2% 2
= =10
L

60 £
E E
= ~
E 40 g s
= b —— Reference model E‘
& ol [ - --- Reduced model (RM) &

----- RM with Cc divided by 2 0
0 L 1 L L 1 L 1 L L i
0 50 100 150 200 0 50 100 150 200 250
Time (s)

Time (s)

Fig. 5. Influence of the compensation capacitances values.

ING
observation
nodes

~—

best node M eliminated
then determinated again

—

N, nodes
choice of the node

N,+1

best node N_+2 eliminated

then determinated again
best node N +1 eliminated
then determinated again

Fig. 6. Diagram of the used process for the supplementary nodes optimised choice.
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20

e 129 nodes model
—————— Reduced model 14-67-129
i —&—  Reduced model 1-65-129

= o

Temperature rise (K)

Temperature rise (K)

40
/ —— 129 nodes model

20 ------  Reduced model 1-33-77 4
L 3 —6—  Reduced model 1-65-129| 0

a 50 100 150 200 250 0 50 100 150 200 250 300
Time (s) Time (s)

@ (b)

Fig. 7. Responses of optimised 3 nodes reduced models: (a) Node 1; (b) Node 129.

—— 129 nodes model Table 1

= Optimised feduced mide] Compensation capacitances values of the wall reduced models
—=— Direct reduced model

Cc1-65 Cc65-129
Raw reduced model (Fig. 6) C/12 C/12
Optimised reduced model C/26.4 C/80.6

Temperature rise (°C)

We use, for the resolution, the simplex search algorithm
of Nelder and Mead [11] with th@ptimization toolbox of
Matlab. It is necessary to successively start the computation
from various initial values as some weighting terms can stay
locked to a local minimum. We use initialisations to 1 and
Fig. 8. Response of the reduced model (RM) optimised for the observation to 1072 and to a combination of the first results. It has
of node 129. to be noticed that the identification of these parameters is
constrained by the stability of the corresponding models.
Each computation is then preceded by a diagonalisation of
the state matrid (Eq. (11)). In order to control the stability
of the reduced model, this matrix is verified not to contain
any negative eigen value. This operation has an insignificant
incidence on computing time.

0 50 100 150 200 250 300
Time (s)

oscillation is barely damped, this oscillation is not dependant
of the choice of the nodes.

4.2. Optimisation of the compensation capacitances

We mentioned that the imaginary part of the admittance A=-C3" G=—(mm)™ Rey)) (11)
matrix ¥ contains the terms of heat capacitances. Concern-we apply this optimisation to the case of the wall model
ing a reduced model, each of these terms are itself composededuced to the three nodes of Fig. 4, watching the response
of two types of capacitors in parallel whose values are added.of the node 129. In this case we have only two compensation
One is only presentin the diagonal of the detailed model ma- capacities values to modify as in this particular case the
trix ¥ and represents the nodal heat capacitance so it has anatrix Y does not include any compensation term. The
known physical interpretation and its value should not be values of these elements in function®f the heat capacity
modified. The second one represents the compensation caef the wall, are given in Table 1. The optimisation of these
pacitance. values allows to obtain the result presented in Fig. 8. The

In order to optimise the reduced model response, actingimprovement is clear: the response at node 129 of the

on the values of the compensation capacitances, the firsteduced model is identical to the one of the reference model.
operation consists on isolating them in a real maGix .

This matrix is then multiplied term by a matriweight

containing weighting coefficients. The obtained ma@in’ 5. Implementation to a complex industrial object

is injected again in the reduced model which is simulated

and an error criterion is computed with the response of  This last point aims to present an implementation of the
the observation nodes. The simulation conditions are of reduction method on an industrial object. We look into the
the same kind as during the previous optimisation. The thermal behaviour of a squirrel cage asynchronous machine
optimisation process consists in the identification of the of nominal power % kW. A nodal detailed model of about
matrix weight values which minimise the error criterion. 1200 nodes is built. The hypothesis of angular symmetry
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by section, linked on the stator and rotor notches, allows to amplitude of which is the one observed during an operation
only model an elementary sector of the machine. A diagram at nominal power. We choose to keep for observation three
representing the cutting of the detailed model is presentednodes supposed to be the hottest spots of the machine: the
on Fig. 9. The sources are of four types: stator Joule lossescentre of a rotor squirrel cage bar, the centre of a stator notch
rotor Joule losses, iron losses (for both stator and rotor) and(windings) and the centre of the front end windings (the
the mechanical losses mainly situated in the bearing. Asventilation being in the back side of the machine). Before
this study only concerns the reduction method, we assumeto study the influence of the reduced model size, we fix the
that these various losses and their repartition in the machinenumber of nodes to 10.
A first reduced model is built from the three observation
optimisation steps takes into account the spatial distribution nodes and 7 supplementary nodes, arbitrarily chosen and
of the losses corresponding to a classical operation of thewithout any optimisation step. The obtained reduced model
machine. Each of the model sources is then a flux step theis schematised in Fig. 10 for its polyhedral structure. The
reduced admittance matrix is indeed a full matrix and each
linkage (conductance or capacitance) between two nodes
has a nonzero value. Then there is, between each couple of
nodes, a link constituted by a positive conductance and a

are well known. The reference simulations used during the

5
V

Fig. 9. Diagram of the cutting of the machine’s model.
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Fig. 10. Polyhedral structure of the motor reduced model.

Designation of the nodes :
@ rotor cage
@ stator windings @ annular air gap
@ front end windings ® back end windings
@ shaft @ stator iron
® rotor iron (centre) @ casing

® rotor iron (back edge)

negative capacitance in parallel.

The optimisation of the choice of the nodes is then
applied to the machine model. Fig. 11 presents the situation
of the kept nodes for the arbitrary and optimised choices.
The nodes of the stator core, shaft and casing are still present
but moved backward in the machine model for the two
first and forward for the latest. The nodes situated in the
annular air gap and the rotor core have been replaced by two
supplementary nodes in the cage of the rotor so there is four
nodes eventually chosen in that element. 7 nodes out of 10
are situated in a heat dissipation zone, this seems to have a
real importance in the conservation of the main information

of the model.

We present simulation results in response to a power input
which distribution inside the model is described in Table 2.
The time variation of the sources is imposed by a weighting
factor plotted versus time in Fig. 12. Fig. 13 presents the

Table 2

Distribution of the losses for the presented simulation

Mechanical losses
(bearings)

Stator joule

losses losses

Rotor joule

Iron losses

rotor stator

26 W 533 W 192w

226 W

86 W 140 W

Designation of the nodes :
@ rotor cage ® rotor cage, front
® stator windings @ back end windings
@ front end windings @ stator iron, back
@ carter, front @ shaft, back
@ rotor cage, back @ front short-circuit ring

(b)

Fig. 11. Spatial position of the nodes kept for reduction: (a) Arbitrary choice; (b) Optimised choice.
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Fig. 15. Compared simulation responses: Detailed model and reduced
model before and after the second optimisation step.

0 500 T000 1500 2000 2500 3000 The optimisation of the values of compensation capaci-
Time (s) tances is applied to the new reduced model to improve the
. o . . .. response of the three observed nodes. The eventually ob-
Fig. 13. Compared responses in simulation—arbitrary and optimised | . . .
reduced model. tained error criteria is 02 K, that is to say a global error
18 times lower than for the non-optimised model. The com-
plete identification of the weighting coefficients matrix for 5
simulation results of the detailed, reduced and reduced with successive initial values represents about 7 hours of comput-
optimised choice of the nodes. The corresponding criteria, ing time for a Celeronll 566 MHz. The simulation results of
which is the error summed on the three observed nodesthis model is represented in Fig. 15, compared to the previ-
integrated over the simulation time, is almost divided by ously discussed one and to the detailed one.
2 after this first optimisation step. The value of this error The fitting between the detailed and optimised reduced
criteria divided by the simulation time and by the number models is almost perfect. The progress brought by the
of observed nodes (3 here) is indeed equal @& before  compensation capacitance optimisation is very noticeable
and 027 K after the optimisation. It has to be specifically and allows, with 10 nodes, to be as efficient as with 1200
noted that this criteria is chosen to be calculated from a stepnodes.
input simulation, which is the same used for the optimisation ~ Concerning the supplementary nodes temperature re-
process. sponses, it is obvious that there is no reason for it to be
Concerning the number of kept nodes, it logically de- improved by the optimisation for they are not monitored
pends on a compromise between quality and computingin the compensation capacitances optimisation process. It is
time. 10 nodes is here an arbitrary choice, Fig. 14 presentsalthough observed in our example each node response has
the progress achieved by increasing the order of the reducedmproved except the one situated on the shaft (node 9 on
model, optimising the choice of the supplementary nodes. Fig. 11), and their quality is close to the observed nodes. One
One can judge, for each reduced model from 3 to 15 nodes,can then doubt on the utility of the optimisation of the choice
the error criteria as defined above. Concerning the comput-of these nodes. Computations have been done to apply the
ing time, the difference between each one is not significant second step of optimisation on various arbitrarily composed
for such small models. reduced models (containing the same three observed nodes).
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